Part Number Hot Search : 
VSH61032 CFULB TDA4566 BU941ZT ADG726 BXS018 T54ACS 10012
Product Description
Full Text Search
 

To Download BD63620AEFV-E2 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  product structure silicon monolithic integrated circuit it is not the radiation - proof design for this product . 1 / 23 tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11 .mar.2014 rev.001 www.rohm.com tsz22111 ? 14 ? 001 36v stepping motor driver bd63620aefv general description bd63620aefv is a bipolar low - consumption driver that driven by pwm current. rated power supply voltage of the device is 36 v, and rated output current is 2.0 a. clk - in driving mode is adopted for input interface, and excitation mode is corresponding to full step mode, half step mode (2 types) and quarter step mode via a built - in dac. in terms of current decay, the fast decay/slow decay ratio may be set without any limitation, and all available mode s may be controlled in the most appropriate way. in addition, the power supply may be driven by one single system, which simplifies the design. features rated output current dc 2.0a low on resistance dmos output clk -in drive mode pwm constant current (other oscillation) built - in spike noise cancel function (external noise filter is unnecessary) full - , half (two kinds) - , quarter - step functionalit y freely timing excitation mode switch current decay mode switch linear ly variable fast/slow decay ratio normal rotation & reverse rotation switching function power save function built - in logic input pull - down resistor power -on reset function thermal shutdown circuit (tsd) over - current protection circuit ocp under voltage lock out circuit (uvlo) over voltage lock out circuit (ovlo) ghost supply prevention (protects against malfunction when power supply is disconnected) microminiature, ultra - thin and high heat - radiation (exposed metal type) package application ppc , multi - function printer, laser beam printer, and ink - jet printer monitoring camera and web camera sewing machine photo printer, fax , scanner and mini printer toy and robot major charac teristics range of power supply voltage rated output current (peak value) range of operating temperature output on resistance (total of upper and lower resistors) 19 28 [v] 2.0 [a] -25 +85 [ ] 0.95 [] (typ.) package w(typ.) x d(typ.)x h(max.) htsso p-b2 4 7.80mm x 7.60mm x 1.00mm basic application circuit figure 1. bd63620aefv application circuit diagram 7 cr 8 mth 13 test 5 vcc1 2 out1b 4 out1a 3 rnf1 20 vcc2 22 out2a 1 gnd 24 out2 b 23 rnf2 12 clk 15 mode0 16 mode1 14 cw_ccw 17 enable vref 9 18 gnd 11 ps
2 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 out2b out1a vcc1 mth vref ps gnd out1b rnf1 rnf2 out2a vcc2 n.c. n.c. gnd clk enable n.c. n.c. cr test mode0 mode1 cw_ccw terminals configureuration diagram block diagram descriptions on terminals no. designation function no. designation function 1 gnd ground terminal 13 test terminal for testing (used by connecting with gnd) 2 out1b h bridge output terminal 14 cw_ccw motor rotating direction setting terminal 3 rnf1 c onnection terminal of resistor for output current detection 15 mode0 motor excitation mode setting terminal 4 out1a h bridge output terminal 16 mode1 motor excitation mode setting terminal 5 vcc1 power supply terminal 17 enable terminal for enabling outp ut 6 n.c. non connection 18 gnd grounding terminal 7 cr connection terminal of cr for setting chopping frequency 19 n.c. non connection 8 mth current decay mode setting terminal 20 vcc2 power supply terminal 9 vref output current value setting terminal 21 n.c. non connection 10 n.c. non connection 22 out2a h bridge output terminal 11 ps power save terminal 23 rnf2 connection terminal of resistor for output current detection 12 clk clock input terminal for advancing the electrical angle 24 out2b h bri dge output terminal 7 8 6 5 3 4 2 1 figure 2. terminals con fig uration diagram 9 10 24 23 22 21 20 19 18 17 16 15 mode0 mode1 enable predriver 5 vcc1 blank time pwm control translator 2bit dac tsd uvlo regulator reset 18 gnd 7 cr 8 mth 11 ps 12 clk 15 16 14 17 vref 9 2 out1b 4 out1a 3 rnf1 20 vcc2 22 out2a 1 gnd 24 out2b 23 rnf2 13 test control logic mix decay control ocp osc ovlo rnf1s rnf2s figure 3. bd63620aefv block diagram cw_ccw 11 12 14 13
3 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 absolute maximum rated values (ta=25 ) item symbol rated value unit supply voltage v cc1,2 - 0.2 +36.0 v power dissipation pd 1.10 1 w 4.00 2 w input voltage for control pin v in - 0.2 +5.5 v rnf maximum voltage v rnf 0.7 v maximum output current (dc ) i out 2.0 3 a/ phase operating temperature range t opr -25 +85 storage temperature range t stg -55 +150 1 70mm 70mm 1.6mm glass epoxy board. derating in done at 8.8mw/ for operating above ta=25 . 2 4 - layer recommended board. derating in done at 32.0 mw/ for operating above ta=25 . 3 do not, however exceed pd, aso and tjmax=150 . recommended operating range (ta= -25 +85 ) item symbol rated value unit supply voltage v cc1,2 19 28 v maximum output current (dc) i out 1.4 4 a/ phase * 4 not exceeding pd aso or tj=150
4 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 electrical characteristics ( unless otherwise specified ta=25 , v cc1,2 =24v ) item symbol specification unit condition minimum standard maximum [ whole ] circuit current at standby i ccst - 0.4 1.5 ma ps=l circuit current i cc - 1.3 4.0 ma ps=h, vref=3v [ control input ] (clk) h - level input voltage v in1h 2.8 - - v l - level input voltage v in1l - - 0.6 v input hysteresis voltage v in1hys - 0.85 - v h - level input current i in1h 35 50 100 a v in1 =5v l - level input current i in1l -10 0 - a v in1 =0v [ control input ] (cw_ccw, mode0, mode1, enable, ps) h - level input voltage v in2h 2.0 - - v l - level input voltage v in2l - - 0.8 v h - level input current i in2h 35 50 100 a v in2 =5v l - level input current i in2l -10 0 - a v in2 =0v [ outpu t (out1a, out1b, out2a, out2b)] output on resistance r on - 0.95 1.3 i out = 1.5 a (sum of upper and lower) output leak current i leak - - 10 a [ current control ] rnfx input current i rnf -80 -40 - a rnfx=0v vref input current i vref - 2.0 - 0.1 - a vre f=0v vref input voltage range v vref 0 - 3.0 v mth input current i mth - 2.0 - 0.1 - a mth=0v mth input voltage range v mth 0 - 3.5 v minimum on time (blank time) t onmin 0.3 0.9 1.5 s c=1000pf, r=39k comparator threshold v cth 0.57 0.60 0.63 v vref=3v
5 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 function explanation clk clock input terminal for advancing the electrical angle clk is reflected at rising edge. the electrical angle advances by one for each clk input. motor?s misstep will occur if noise is picked up at the clk terminal, s o please design the pattern in such a way that there is no noise plunging. mode0,mode1 motor excitation mode setting terminal set the motor excitation mode p lease refer to the p.12, 13 for the timing chart & motor torque vector of various excitation modes. unrelated to clk, change in setting is forcibly reflected (refer to p.1 5 ). cw_ccw terminal motor rotating direction setting set the motor?s rotating direc tion. change in setting is reflected at the clk rising edge immediately after the change in setting (refer to p.14) cw_ccw rotating direction l clockwise (ch2?s current is outputted with a phase lag of 90 in regard to ch1?s current) h counter clockwise(c h2?s current is outputted with a phase lead of 90 in regard to ch1?s current) enable terminal output enable terminal turn off forcibly all the output transistors (motor output is open). when enable=l, input to clk is blocked, and p hase advance operation of internal translator circuit is stopped. however, during excitation modes (m ode0,mode1) switch within the interval of enable=l, as enable= lh is reset, the new mode upon switch will be applied for excitation (see p.15). enable motor output l open (electrical angle maintained ) h active ps power save terminal ps can make circui t standby state and make motor output open. in standby state, translator circuit is reset (initialized) and electrical angle is initialized. please be careful because there is a delay of 40s(max.) before it is returned from standby state to normal state a nd the motor output becomes active (refer to p.11). ps status l standby state (reset) h active the electrical angle (initial electrical angle) of each excitation mode immediately after reset is as follows (refer to p.12, 13). excitation mode initial ele ctrical angle full step 45 halfstep a 45 halfstep b 45 quarter step 45 mode0 mode1 excitation mode l l full step h l half step a l h half step b h h quarter step
6 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 vcc1,vcc2 power supply terminal motor?s drive current is flowing in it, so please wire in such a way that the wire is thick & short and has low impedance. voltage vcc may have great fluctuation, so please arrange the bypass capacitor of about 100 ? 470 f a s close to the terminal as possible and adjust in such a way that the voltage vcc is stable. please increase the capacity if needed especially when a large current is used or those motors that have great back electromotive force are used. in addition, for the purpose of reducing of power supply?s impedance in wide frequency bandwidth, parallel connection of multi - layered ceramic capacitor of 0.01 ? 0.1 f etc is recommended. extreme care must be used to make sure that the voltage vcc does not exceed the rating even for a moment. vcc1 & vcc2 are shorted inside ic, so please be sure to short externally vcc1 & vcc2 when using. if used without shorting , malfunction or destruction may occur because of concentration of current routes etc., so please make sure that they are shorted when in use. still more, in the power supply terminal, there is built - in clamp component for preventing of electrostatic destr uction. if steep pulse or voltage of surge more that maximum absolute rating is applied, this clamp component operates, as a result there is the danger of destruction, so please be sure that the maximum absolute rating must not be exceeded. it is effective to mount a zener diode of about the maximum absolute rating. moreover, the diode for preventing of electrostatic destruction is inserted between vcc terminal and gnd terminal, as a result there is the danger of ic destruction if reverse voltage is applied between vcc terminal and gnd terminal, so please be careful. gnd ground terminal in order to reduce the noise caused by switching current and to stabilize the internal reference voltage of ic, please wire i n such a way that the wiring impedance from this terminal is made as low as possible to achieve the lowest ele ctrical potential no matter what operating state it may be. moreover, please design patterns not to have any common impedance with other gnd patterns. out1a,out1b,out2a,out2b h bridge output terminal motor?s drive current is flowing in it, so please wir e in such a way that the wire is thick & short and has low impedance. it is also effective to add a schottky diode if output has positive or negative great fluctuation when large current is used etc, f or example, if counter electromotive voltage etc. is gr eat. moreover, in the output terminal, there is built - in clamp component for preventing of electrostatic destruction. if steep pulse or voltage of surge more tha n maximum absolute rating is applied, this clamp component operates, as a result there is the d anger of even destruction, so please be sure that the maximum absolute rating must not be exceeded. rnf1,rnf2 connection terminal of resistor for detecting of output current please connect the resistor of 0.1 ? 0.3 for current detection between this term inal and gnd in view of the power consumption of the current - detecting resistor, please determine the resistor in such a way that w=i out2 ? r[w] does not exceed the power dissipation of the resistor. in addition, please wire in such a way that it has a low i mpedance and does not have a impedance in common with other gnd patterns because motor?s drive current flows in the pattern through rnf terminal current - detecting resistor gnd. please do not exceed the rating because there is the possibility of circuits? m alfunction etc. if rnf voltage has exceeded the maximum rating (0.7v). moreover, please be careful because if rnf terminal is shorted to gnd, large current flows without normal pwm constant current control, then there is the danger that ocp or tsd will ope rate. if rnf terminal is open, then there is the possibility of such malfunction as output current does not flow either, so please do not let it open. vref output current value setting terminal this is the terminal to set the output current value. the output current value can be set by vref voltage and current - detecting resistor (rnf resistor). output current i out [a] = {vref [v] / 5(division ratio insi de ic)} / { rnf[ ] + } rnf terminal resistor ( reference value ), min.25m / typ.30m / max.35m please avoid using it with vref terminal open because if vref terminal is open, the input is unsettled, and the vref voltage increases, and then there is the possibility of such malfunctions as the setting current increases and a large current flows etc. please keep to the input voltage range because if the voltage of over 3v is applied on vref terminal, then there is also the danger that a large current flows in the output and so ocp or tsd will operate. besides, please take into consider ation the outflow current (max.2a) if inputted by resistance division when selecting the resistance value. the minimum current, which can be controlled by vref voltage, is determined by motor coil?s l & r values and minimum on time because there is a mini mum on time in pwm drive. cr connection terminal of cr for setting chopping frequency this is the terminal to set the chopping frequency of output. please connect the external c(470p 1500pf) and r(10k 200k ) between this terminal and gnd. please refer t o p9. please interconnect from external components to gnd in such a way that the interconnection does not have impedance in common with other gnd patterns. in addition, please carry out the pattern design in such ways as keeps such steep pulses as square w ave etc. away and that there is no noise plunging . please mount the two components of c and r if being used by pwm constant current control because normal pwm constant current control becomes impossible if cr terminal is open or it is biased externally.
7 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 mth current decay mode - setting terminal this is the terminal to set the current decay mode. current decay mode can be optionally set according to input voltage. mth terminal input voltage [v] current decay mode 0~0.3 slow decay 0.4~1.0 mix decay 1.5~3.5 fast decay please connect to gnd if using at slow decay mode. please avoid using with mth terminal open because if mth terminal is open, the input is unsettled, and then there is the danger that pwm operation becomes unstable. besides, please take into c onsideration the outflow current (max.2a) if inputted by resistance division when selecting the resistance value. test terminal terminal for inspection this terminal is used for delivery inspection on ic, and shall be grounded before use. in addition, malfunctions m ay be caused by application without grounding. nc terminal this terminal is unconnected electrically with ic internal circuit.
8 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 thermal shutdown (tsd) this ic has a built - in thermal shutdown circuit for thermal protection. when the ic?s chip temper ature rises above 175 (typ.), the motor output becomes open. also, when the temperature returns to under 150 (typ.), it automatically r eturns to normal operation. however, even when tsd is in operation, if heat is continued to be added externally, heat ov erdrive can lead to destruction. over current protection (ocp) this ic has a built in over current protection circuit as a provision against destruction when the motor outputs are shorted each other or vcc - motor output or motor output - gnd is shorted. thi s circuit latches the motor output to open condition when the regulated threshold current flows for 4s (typ.). it returns with power reactivation or a reset of the ps terminal. the over current protection circuit?s only aim is to prevent the destruction o f the ic from irregular situations such as motor output shorts, and is not meant to be used as protection or security for the set. therefore, sets should not be designed to take into account this circuit?s functions. after ocp operating, if irregular situa tions continues and the return by power reactivation or a reset of the ps terminal is carried out repeat ed ly, then ocp operates repeat ed ly and the ic may generate heat or otherwise deteriorate. when the l value of the wiring is great due to the wiring bein g long, after the over current has flowed and the output terminal voltage jumps up and the absolute maximum values may be exceeded and as a result, there is a possibility of destruction. also, when current which is over the output current rating and under the ocp detection current flows, the ic can heat up to over t jmax =150 and can deteriorate, so current which exceeds the output rating should not be applied. under voltage lock out (uvlo) this ic has a built - in under voltage lock out function to prevent false operation such as ic output during power supply under voltage. w hen the applied voltage to the vcc terminal goes under 15v (typ.), the motor output is set to open. this switching voltage has a 1v (typ.) hysteresis to prevent false operation by noise etc. please be aware that this circuit does not operate during power s ave mode. also, the electrical angle is reset when the uvlo circuit operates during clk - in drive mode. over voltage lock out (ovlo) this ic has a built - in over voltage lock out function to protect the ic output and the motor during power supply over voltage. when the applied voltage to the vcc terminal goes over 32v (typ.), the motor output is set to open. this switching voltage has a 1v (typ.) hysteresis and a 4s (typ.) mask time to prevent false operation by noise etc. although this over voltage locked out circuit is built - in, there is a possibility of destruction if the absolute maximum value for power supply voltage is exceeded, therefore the absolute maximum value should not be exceeded. please be aware that this circuit does not operate during power save mode. ghost supply prevention (protects against malfunction when power supply is disconnected) i f a signal (logic input, mth , vref ) is input when there is no power supplied to this ic, there is a function which prevents the false operation by voltage supplied via the electrostatic destruction prevention diode from these input terminals to the vcc to this ic or to another ic?s power supply. therefore, there is no malfunction of the circuit even when voltage is supplied to these input terminals while there is no power supply.
9 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 pwm constant current control 1) current control operation when the output transistor is turned on, the output current increases, raising the voltage over the current sense resistor. when the voltage on the rnf pin reaches the voltage value set by the inte rnal 2 - bit dac and the vref input voltage, the current limit comparator engages and enters current decay mode. the output is then held off for a period of time determined by the rc time constant connected to the cr pin. the process repeats itself constantl y for pwm operation. 2) noise - masking function in order to avoid misdetection of output current due to rnf spikes that may occur when the output turns on, the ic employs an automatic current detection - masking period (t onmin ), during which current detection is disabled immediately after the output transistor is turned on. this allows for constant - current drive without the need for an external filter. this noise - masking period defines the minimum on - time for the motor output transistor. 3) cr timer the cr fil ter connected to the cr pin is repeatedly charged and discharged between the vcrh and vcrl levels. the output of the internal comparator is masked while charging from vcrl to vcrh in order to cancel noise. (as mentioned above, this period defines the minim um on - time of the motor output transistor.) the cr terminal begins discharging once the voltage reaches vcrh. when the output current reaches the current limit during this period (i.e. rnf voltage reaches the decay trigger voltage), then the ic enters deca y mode. the cr continues to discharge during this period until it reaches vcrl, at which point the ic output is switched back on. the current output and cr pin begin charging simultaneously. the cr charge time (t onmin ) and discharge time (t discharge ) are s et by external components, according to the following formulas. the total of t onmin and t discharge yield the chopping period, t chop . t onmin [s] P c ? r' ? r / (r'+r) ? ln[(vcr - 0.4)/(vcr - 1.0)] vcr=v ? r/(r'+r) v: internal regulator voltage 5v(typ.) r': cr terminal in ternal impedance 5k (typ.) t discharge [s] P c ? r ? ln[(1+ )/0.4] :see the right graph. t chop [s] Pt onmin + t discharge figure 4. timing chart of cr voltage, rnf voltage and output cur rent attach a resistor of at least 10 k to the cr terminal (10 k~200 k recommended) as lower values may keep the rc from reaching the vcrh voltage level. a capacitor in the range of 470 pf ? 1500 pf is also recommended. as the capacitance value is incre ased, however, the noise - masking period (t onmin ) also increases, and there is a risk that the output current may exceed the current limit threshold due to the internal l and r components of the output motor coil. also, ensure that the chopping period (t cho p ) is not set longer than necessary, as doing so will increase the output ripple, thereby decreasing the average output current and yielding lower output rotation efficiency. the optimal value should reduce the motor drive noise while keeping distortion of the output current waveform to a minimum. cr voltage rnf voltage output current spike noise current limit value gnd minimum o n time t onmin vcrh(1.0v typ.) vcrl(0.4v typ.) gnd 0ma current limit value chopping period t chop discharge time t discharge 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0 500 1000 1500 2000 c[pf] [v]
10/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 current decay mode the ic allows for a mixed decay mode in which the ratio of fast and slow decay can be optionally set. the following diagrams show the operating state of each transistor and the regenerative cu rrent path during attenuation for each decay mode: figure 5. route of regenerated current during current decay the merits of each decay mode are as follows: slow decay during current attenuation, the voltage between motor coils is small and the regeneration current decreases slowly, decreasing the output current ripple. this is favorable for keeping motor torque high. however, due to fall - off of current contr ol characteristics in the low - current region, or due to reverse emf of the output motors exhibited when using high - pulse - rate half - step or quarter - step modes, the output current increases, distorting the output current waveform and increasing motor vibrati on. thus, this decay mode is most suited to full - step modes, or low - pulse- rate half - step or quarter - step modes. fast decay fast decay decreases the regeneration current much more quickly than slow decay, greatly reducing distortion of the output current waveform. however, fast decay yields a much larger output current ripple, which decreases the overall average cur rent running through the motor. this causes two problems: first, the motor torque decreases (increasing the current limit value can help eliminate this problem, but the rated output current must be taken into consideration); and second, the power loss with in the motor increases and thereby radiates more heat. if neither of these problems is of concern, then fast decay can be used for high - pulse rate half - or quarter - step drive. additionally, this ic allows for a mixed decay mode that can help improve upon problems that arise from using fast or slow decay alone. in this mode, the ic switches automatically between slow and fast decay, improving the current control characteristics without increasing the output current ripple. mixed decay mode operates by split ting the decay period into two sections, the first x%(t1 - t2) of which operates the ic in slow decay mode, and the remainder(t2 - t3) of which operates in fast decay mode. however, if the output current (i.e., the voltage on the rnf pin) does not reach the se t current limit during the first x% (t1 - t2) decay period, the ic operates in fast decay mode only. mth voltage [v] current decay mode 0~0.3 slow decay 0.4~1.0 mix decay 1.5~3.5 fast decay figure 6. relation between cr terminal voltage, mth voltage, and output current during mixed decay on off o ff on m on off o ff fast decay slow decay on off o ff on m on on o ff off output on time current decay time cr voltage current limit v alue output curr ent 0a gnd 1.0v 0.4v slow decay fast decay chopping period t chop mth voltage t1 t2 t3
11 / 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 translator circuit this series builds in translator circuit and can drive stepping motor in clk - in mode. the operation of the translator circuit in clk - in drive mode is described as below. reset operation the translator circuit is initialized by power on reset function and ps terminal. ? initializing operation when power supply is turned on if power supply is turned on at ps=l (please use this sequence as a general rule) when power supply is turned on, the power on reset function operates in ic and initia lized, but as long as it is ps=l, the motor output is the open state. after power supply is turned on, because of the changing of ps=l ? h, the motor output becomes the active state, and the excitation is started at the initial electrical angle. but at the t ime of ps=l ? h, it returns from the standby state to the normal state and there is a delay of 40 s(max.) until the motor output has become the active state. if power supply is turned on at ps=h when power supply is turned on, the power on function in ic operates, and initialized before the motor output become s the active state, and the excitation is started at the initial electrical angle. ? initializing operation during motor operating please input the reset signal to ps terminal when the t ranslator circuit is initialized during motor operating. (refer to p.14) but at the time of ps=l ? h, it returns from the standby state to the normal state and there is a delay of 40 s (max.) until the motor output has become the active state, so please be c areful. control input timing please input as shown below because the translator circuit operates at the rising edge of clk signal. if you disobey this t iming and input, then there is the possibility that the translator circuit does not operate as expecte d. in addition, at the time of ps=l ? h, it returns from the standby state to the normal state and there is a delay of 40 s (max.) until the motor output has become the active state, so within this delay interval there is no phase advance operation even if c lk is inputted. a:ps minimum input pulse width ?????? 20 s b:ps rising edge clk rising edge input possible maximum delay time ?????? 40 s c:clk minimum period ?????? 4 s d:clk minimum input h pulse width ?????? 2 s e:clk minimum input l pulse width ?????? 2 s f:mode0,mode1,cw_ccw set - up time ??????1 s g:mode0,mode1,cw_ccw hold time ?????? 1 s reset is released active motor output open motor output on ps clk out1a out1b delay ps clk mode0 f g f g mode1 cw_ccw a d e b c
12/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 ? full step (mode0=l, mode1=l, cw_ccw=l, enable=h) ? half step a (mode0=h, mode1=l, cw_ccw=l, enable =h) 1 7 5 100% 67% 33% 8 4 6 2 out1a out2b out2a out1b 8clk = electrical angle 360 100% 67% 33% - 33% - 67% -100% 100% 67% 33% - 33% - 67% - 100% 1 4 3 2 100% 67% 33% out2b out1b out2a out1a 4clk = e lectrical angle 360 iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a 100% 67% 33% - 33% - 67% - 100% 100% 67% 33% - 33% - 67% - 100% 3 iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a
13/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 ? half step b(mode0=l, mode1=h, cw_ccw=l, enable=h) ? quarter step(mode0=h, mode1=h, cw_ccw=l, enable=h) 1 7 5 3 100% 67% 33% 8 4 6 2 out1 a out2b out2a out1b 8clk = electrical angle 360 100% 67% 33% - 33% - 67% - 100% 100% 67% 33% -33% -67% - 100% out1a 1 13 9 5 100% 67% 33% 2 7 11 1 3 14 12 10 4 6 15 2 16 8 out1b out2a out2b 16clk = electrical angle 360 100% 67% 33% - 33% - 67% -100% 100% 67% 33% - 33% - 67% - 100% iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a ? ? ? ? ? ? iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a
14/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 ? reset timing chart (quarter step, mode0=h, mode1=h, cw_ccw=l , enable=h) if the terminal ps is input to l, the reset operation is done with regardless of other i nput signals when reset the translator circuit while motor is working. at this time, ic internal circuit enters the standby mode, and makes the motor output open. ? cw_ccw switch timing chart (full step, mode0=l, mode1=l, enable= h) the switch of cw_ccw is reflected by the rising edge of clk that comes immediately after the changes of the cw_ccw signal. however, depending on the state of operation of the motor at the switch the motor cannot follow even if the control on driver ic s ide is correspondent and there are possibilities of step - out and mistake step in motor, so please evaluate the sequence of the switch enough. cw ccw cw_ccw iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a 100% -100% 100% - 100% 100% 67% 33% - 33% - 67% - 100% 100% 67% 33% -33% -67% - 100% reset iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a
15/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 ? enable switch timing chart (full step, mode0=l, mode1=l, enable=h) the switch of the enable signal is reflected by the change in the enable signal with regardless of other input signals. in the section of enable=l, the motor output becomes open and the electrical angle doesn't advance. because the translator circuit stop and clk input is canceled. therefore, the progress of enable=lh is completed before the input of enable=l. excitation mode (mode0, mode1) also switches within enable=l interval. where excitation mode switched within enable=l interval, restoring of enable=lh was done in the excitation mode after switch. restoring in the state prior to input of enable=l ? about the switch of the motor excitation mode t he switch of the excitation mode can be done with regardless of the clk signal at the same time as changing of the signal mode0 and mode1 . the following built - in function can prevent motor out -of - step caused by discrepancies of torque vector of transitional excitations during switch between excitation modes. however, due to operation state of motor during switch, motor may not act following c ontrol on ic side of controller, and thereby lead to out -of - step or miss step. therefore, switch sequence shall be evaluated sufficiently before any decision. ? cautions of bidirectional switch of cw_ccw and excitation modes (mode0,mode1) as shown in the f igure below, the area between the end of reset discharge (ps=lh) and beginning of the first clk signal input is defined as interval a, while the area post the end of the first clk signal input is defined as interval b. interval a => for cw_ccw, no limitat ion is applied on switch of excitation mode. interval b => in clk1 period, or within enable=l interval, cw_ccw and excitation mode can?t be switched together. violation of this restriction may lead to false step (with one extra leading phase) or out -of - ste p. therefore, in case that cw_ccw and excitation mode s are switched simultaneously, ps terminal must be input with reset signal . then start to operate in interval a before carrying out such bidirectional switch. output off & translator stop enable iout(ch1) iout(ch2) out2b ps clk out1a out1b out2a 100% -100% 100% -100% interval a interval b ps clk
16/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 power dissipation please confirm th at the ic?s chip temperature tj is not over 150 , while considering the ic?s power consumption (w), package power (pd) and ambient temperature (ta). when tj=150 is exceeded the functions as a semiconductor do not operate and problems such as parasitism an d leaks occur. constant use under these circumstances leads to deterioration and eventually destruction of the ic. tjmax=150 must be strictly obeyed under all circumstances. thermal calculation the ic?s consumed power can be estimated roughly with the p ower supply voltage (v cc ), circuit current (i cc ), output on resistance (r onh ? r onl ) and motor output current value (i out ). the calculation method during full step drive, slow decay mode is shown here: consumed power of the vcc [w] = v cc [v] ? i cc [a] ?????? ? consumed power of the output dmos [w] = (r onh [ ] + r onl [ ]) ? i out [a] 2 ? 2[ch] ? on_duty during output on + (2 ? r onl [ ]) ? i out [a] 2 ? 2[ch] ? (1 - on_duty) ??????? during current decay however, on duty: pwm on duty = t on / (t chop ) t on varies depending on the l a nd r values of the motor coil and the current set value. please confirm by actual measurement, or make an approximate calculation. t chop is the chopping period, which depends on the external cr. see p.9 for details. ic number upper pchdmos on resistance r onh [ ] (typ.) lower nchdmos on resistance r onl [ ] (typ.) bd63620aefv 0.55 0.40 consumed power of total ic w_total [w] = + junction temperature tj = ta[ ] + ja [ /w] ? w_total [w] however, the thermal resistance value ja [ /w] differs greatly dependin g on circuit board conditions. refer to the derating curve on p.21.also, we are taking measurements of thermal resistance value ja of boards actually in use. please feel free to contact our salesman. the calculated values above are only theoretical. for ac tual thermal design, please perform sufficient thermal evaluation for the application board used, and create the thermal design with enough margin to not exceed tjmax=150 .although unnecessary with normal use, if the ic is to be used under especially stric t heat conditions, please consider externally attaching a schottky diode between the motor output terminal and gnd to abate heat from the ic. temperature monitoring in respect of bd63620aefv , t here is a way to directly measure the approximate chip tempera ture by using the test terminal with a protection diode for prevention from electrostatic discharge . however, temperature monitor using this test terminal is only for evaluation and experimenting, and must not be used in actual usage conditions. (1) meas ure the terminal voltage when a current of idiode=50a flows from the test terminal to the gnd, without supplying vcc to the ic. this measurement is of the vf voltage inside the diode. (2) measure the temperature characteristics of this terminal voltage. ( vf has a linear negative temperature factor against the temperature.) with the results of these temperature characteristics, chip temperature may be calibrated from the test terminal voltage. (3) supply vcc, confirm the test terminal voltage while running the motor, and the chip temperature can be approximated from the results of (2). figure 7 .model diagram for measuring chip temperature - vf[mv] 25 150 chip temperature t j [ ] test internal circuit vf internal circuit idiode vcc
17/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 example for applied circuit figure 8. bd63620aefv block diagram and applied circuit diagram 0.2 0.2 test terminal applied upon connecting with gnd refer to p7 for detail resistor for current detection setting range is 0.1 ? 0.3 . refer to p. 6 for detail. 39k 1000pf set the chopping frequency. setting range is c:470pf 1500pf r:10k ?200k refer to p. 6 , 9 for detail. bypass capacitor. setting range is 100uf 470uf(elect rolytic) 0.01uf 0.1uf(multilayer ceramic etc.) refer to p. 6 for detail. be sure to short vcc1 & vcc2. resistor for current de tection setting range is 0.1 ? 0.3 . refer to p. 6 for detail. predriver 5 vcc1 blank time pwm control translator 2bit dac tsd uvlo regulator reset 18 gnd 7 cr 8 mth 11 ps 12 clk 15 mode0 16 mode1 14 cw_ccw 17 enable vref 9 2 out1b 4 out1a 3 rnf1 20 vcc2 22 out2a 1 gnd 24 out2b 23 rnf2 13 test control logic mix decay control ocp osc ovlo rnf1s rnf2s 0.1 f 100 f set the output current. input by resistor division. refer to p. 6 for detail. set the current decay mode. slow decay ? connect to gnd. mix decay ? input by resistor division. refer to p. 7 , 10 for detail. logic input terminal see p5 for detail. pow er save terminal refer to p. 5 for detail.
18/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 input output equivalent circuit diagram figure 9 . input output equivalent circuit diagram 10k 100k circuitry vcc cw_ccw mode1 mode0 enable ps vref 5k vcc circuitry rnf1, rnf2 out1b out2b out1a out2a cr 5k 5k 5k vreg (internal regulator) 215k 100k circuitry vcc clk 10k mth 5k 5k
19/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 operational notes 1. reverse c onnection of p ower s upp ly connecting the power supply in reverse polarity can damage the ic. take pr ecautions against reverse polarity when connecting the power supply , such as mounting an external diode between the power supply and the ic ? s power supply pin s. 2. power s upply l ine s design the pcb layout pattern to provide low impedance supply lines. s eparate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block . furthermore, connect a capacitor to ground at all power supply pins . consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. g round voltage ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. g round w iring p attern when using both small - signal and large - current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avo id fluctuations in the small - signal ground caused by large currents. also ensure that the ground traces of external components do not cause variations on the ground voltage. the ground lines must be as short and thick as possible to reduce line impedance. 5. thermal c onsideration should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. the absolute maximum rating of the pd stated in this specification is when t he ic is mounted on a 70mm x 70mm x 1.6mm glass epoxy board. in case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the pd rating. 6. recommended o perating c onditions these conditions represent a range within which the expected characteristics of the ic can be approximately obtained . the e lectrical characteristics are guaranteed under the conditions of each parameter . 7. inrush current when power is first supplied to the ic, it is possible that the intern al logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the ic has more than one power supply. therefore, give special consideration to power coupling capacitance, power wiring, w idth of ground wiring, and routing of connections. 8. operation u nder s trong e lectromagnetic f ield operating the ic in the presence of a strong electromagnetic field may cause the ic to malfunction . 9. testing on a pplication b oards when testing the ic on an application board, connecting a capacitor directly to a low - impedance output pin may subject the ic to stress. always discharge capacitors completely after each process or step. the ic?s power supply should always be turned off completely before connectin g or removing it from the test setup during the inspection process. to prevent damage from static discharge, ground the ic during assembly and use similar precautions during transport and storage. 10. inter - pin short and mounting errors ensure that the direct ion and position are correct when mounting the ic on the pcb. incorrect mounting may result in damaging the ic. avoid nearby pins being shorted to each other especially to ground , power supply and output pin . inter - pin shorts could be due to many reasons s uch as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.
20/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 operational notes ? continued 11. unused input pins input pins of an ic are often connected to the ga te of a mos transistor. the gate has extremely high impedance and extremely low capacitance. if left unconnected, the electric field from the outside can easily charge it. the small charge acquired in this way is enough to produce a significant effect on t he conduction through the transistor and cause unexpected operation of the ic. so unless otherwise specified, unused input pins should be connected to the power supply or ground line. 12. regarding the i nput p in of the ic this monolithic ic contains p+ isolat ion and p substrate layers between adjacent elements in order to keep them isolated. p - n junctions are formed at the intersection of the p layers with the n layers of other elements, creating a parasitic diode or transistor. for example (refer to figure be low): when gnd > pin a and gnd > pin b, the p - n junction operates as a parasitic diode. when gnd > pin b, the p - n junction operates as a parasitic transistor. parasitic diodes inevitably occur in the structure of the ic. the operation of parasitic diode s can result in mutual interference among circuits, operational faults, or physical damage. therefore , conditions that cause these diodes to operate, such as applying a voltage lower than the gnd voltage to an input pin (and thus to the p substrate) should be avoided. fig ure 10. example of monolithic ic structure 13. area of safe operation (aso) operate the ic such that the output voltage, output current, and power dissipation are all within the area of safe operation (aso). 14. thermal s hutdown c ircuit(tsd) t his ic has a built - in thermal shutdown circuit that prevents heat damage to the ic. normal operation should always be within the ic?s power dissipation rating. if however the rating is exceeded for a continued period, the junction temperature (tj) will ris e which will activate the tsd circuit that will turn off all output pins. when the tj falls below the tsd threshold, the circuits are automatically restored to normal operation. note that the tsd circuit operates in a situation that exceeds the absolute ma ximum ratings and therefore, under no circumstances, should the tsd circuit be used in a set design or for any purpose other than protecting the ic from heat damage. 15. over c urrent p rotection c ircuit (ocp) this ic incorporates an integrated overcurrent pro tection circuit that is activated when the load is shorted. this protection circuit is effective in preventing damage due to sudden and unexpected incidents. however, the ic should not be used in applications characterized by continuous operation or transi tioning of the protection circuit. 16. operation u nder s trong e lectromagnetic f ield ( bd63620aefv ) the ic is not designed for us ing in the presence of strong electromagnetic field. be sure to confirm that no malfunction is found when using the ic in a strong electromagnetic field. 17. metal on the backside (define the side where product markings are printed as front) (bd63620aefv ) the metal on the backside is shorted with the backside of ic chip therefore it should be connected to gnd. be aware that here is a po ssibility of malfunction or destruction if it is shorted with any potential other than gnd. 18. test terminal ( bd63620aefv ) be sure to connect test pin to gnd.
21/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 power dissipation htssop - b24 is designed with heat - remission metal on the back side of ic to perform heat dissipation treatment using through hole from backside. it is possible to increase power dissipation considerably by ensuring sufficient heat - releasing area on both top and back sides such as copper foil. pleas e not e that the power dissipat ion described below may not be assured with out being shorted . the back metal is shorted with the backside of the ic chip, being a gnd potential . t here is a possibility for malfunction if it is shorted with any potential other than gnd, which should be avoi ded. t herefore the back metal should be soldered onto the gnd to short. please be careful that this package is designed to be used after performing heat dissipation treatment on the back metal and improving heat dissipation efficiency. ambient temperature : ta[ c] 3.0 2.0 1.0 100 125 4.0w 0 4 power dissipation : pd[w] 4.0 mea surement machine th156 kuwano electric measurement condition rohm board board size 70mm*70mm*1.6mm (with through holes on the board) the exposed metal of the backside is connected to the board with solder board ? 1 - layer board (copper foil on the back 0mm* 0mm) board ? 2 - layer board (copper foil on the back 15mm*15mm) board ? 2 - layer board (copper foil on the back 70mm*70mm) board ? 4 - layer board (copper foil on the back 70mm*70mm) board ? ja =113.6 c/w board ? ja =73.5 c/w board ? ja =44.6 c/w board ? ja =31.3 c/w figure 11. htssop - b24 derating curve 2.8w 1.7w 1.1w 3 2 1 75 50 25 150
22/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 sele cting a model name when ordering b d 6 3 6 2 0 a e f v - e 2 rohm model package type efv : htssop - b24 packing, forming specification e2 : reel - wound e mbossed taping marking diagram htssop - b24 (top view) bd63620 a part number marking lot number 1pin mark
23/ 23 bd63620aefv tsz02201 - 0p2p0b7006 7 0 - 1 - 2 ? 20 14 rohm co., ltd. all rights reserved. 11.mar.2014 rev.001 www.rohm.com tsz22111 ? 15 ? 001 physical dimension , tape and reel information package name htssop - b24 (bd63620aefv)
notice - p ga - e rev.00 3 ? 201 5 rohm co., ltd. all rights reserved. notice precaution on using rohm products 1. our p roducts are designed and manufactured for application in ordinary electronic equipment s ( such as av equipment, oa equipment, telecommunication equipment, home elec tronic appliances, amusement equipment, etc.). if you intend to use our products in devices requiring extremely high reliability ( such as medical equipment ( n ote 1 ) , transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, f uel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life , bodily injury or serious damage to property ( specific applications ) , please consult with the rohm sales represe ntative in advance. unless otherwise agreed in writing by rohm in advance, rohm shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any rohm s products for specific appl ications. ( n ote1) m edical e quipment c lassification of the s pecific applications japan usa eu china class 2. rohm designs and manufactures its products subject to strict quality control system. however, semiconductor products can fail or malfunction at a certain rate. please be sure to implement, at your own responsi bilities, adequate safety measures including but not limited to fail - safe design against the physical injury, damage to any property, which a failure or malfunction of our products may cause. the following are examples of safety measures: [a] installation of protection circuits or other protective devices to improve system safety [b] installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. our p roducts are designed and manufactured for use under standard conditions a nd not under any special or extraordinary environments or conditions, as exemplified below . accordingly, rohm shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any rohms p roduct s under any special or extraordinary environments or conditions . if you intend to use our products under any special or extraordinary environments or conditions (as exemplified below), your independent v erification and confirmation of product performance, reliability, etc, pri or to use, must be necessary : [a] use of our products in any types of liquid, including water, oils, chemicals, and organic solvents [b] use of our products outdoors or in places where the p roducts are exposed to direct sunlight or dust [c] use of our prod ucts in places where the p roducts are exposed to sea wind or corrosive gases, including cl 2 , h 2 s, nh 3 , so 2 , and no 2 [d] use of our products in places where the p roducts are exposed to static electricity or electromagnetic waves [e] use of our products in p roximity to heat - producing components, plastic cords, or other flammable items [f] s ealing or coating our p roducts with resin or other coating materials [g] use of our products without cleaning residue of flux (even if you use no - clean type fluxes, cleanin g residue of flux is recommended); or washing our products by using water or water - soluble cleaning agents for cleaning residue after soldering [h] use of the p roducts in places subject to dew condensation 4 . the p roducts are not subject to radiation - proo f design . 5 . please verify and confirm characteristics of the final or mounted products in using the products. 6 . in particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of pe rformance characteristics after on - board mounting is strongly recommended. avoid applying power exceeding normal rated power; exceeding the power rating under steady - state loading condition may negatively affect product performance and reliability. 7 . de - rate power dissipation d epending on a mbient temperature . when used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8 . confirm that operation temperature is within the specified range described in the product specification. 9 . rohm shall not be in any way responsible or liable for f ailure induced under devian t condition from what is defined in this document . precaution for mounting / circuit board design 1. when a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. in principle, the reflow soldering method must be used on a surface - mount products, the flow soldering method must be used on a through hole mount products. i f the flow soldering method is preferred on a surface - mount products , please consult with the roh m representative in advance. for details , please refer to rohm mounting specification
notice - p ga - e rev.00 3 ? 201 5 rohm co., ltd. all rights reserved. precautions regarding application examples and external circuits 1. if change is made to the constant of an external circuit, please allow a sufficient margin considerin g variations of the characteristics of the p roducts and external components, including transient characteristics, as well as static characteristics. 2. you agree that application notes, reference designs, and associated data and information contained in t his document are presented only as guidance for products use . therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in t his document. rohm shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. precaution for electrostatic this p roduct is e lectrostatic sensitive product, which may be damaged due to e lectrostatic discharge. please take proper caution in your manufacturing process and stor age so that voltage exceeding the product s maximum rating will not be applied to p roducts. please take special care under dry condition (e .g. grounding of human body / equipment / solder iron, isolation from charged objects, setting of ionizer, friction prevention and temperature / humidity control). precaution for storage / transportation 1. product performance and soldered connections may deteriorate if the p roducts are stored in the places where : [a] the p roducts are exposed to sea winds or corrosive gases, including cl2, h2s, nh3, so2, and no2 [b] the temperature or humidity exceeds those recommended by rohm [c] the products are exposed to direct sunshine or condensation [d] the products are exposed to high electrostatic 2. even under rohm recommended storage condition, solderability of products out of recommended storage time period may be degraded. it is strongly recommended to confirm solderability before using p roducts of which storage time is exceeding the recommended storage time period. 3. store / transport cartons in the correct direction, which is indicated on a carton with a symbol. otherwise bent leads may occur due to excess ive stress applied when dropping of a carton. 4. use p roducts within the specified time after opening a humidity barrier bag. baking is required before using p roducts of which storage time is exceeding the recommended storage time period . precaution for p roduct l abel a two - dimensional barcode printed on rohm p roduct s label is for rohm s internal use only . precaution for d isposition when disposing p roducts please dispose them properly using a n authorized industry waste company. precaution for foreign e xchange and foreign t rade act since concerned goods might be fallen under listed items of export control prescribed by foreign exchange and foreign trade act, please consult with rohm in case of export. precaution regarding intellectual property rights 1. all information an d data including but not limited to application example contained in this document is for reference only. rohm does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party reg arding such information or data. 2. rohm shall not have any obligations where the claims, actions or demands arising from the combination of the products with other articles such as components, circuits, systems or external equipment (including software). 3. no license, expressly or implied, is granted hereby under any intellectual property rights or other rights of rohm or any third parties with respect to the products or the information contained in this document. provided, however, that rohm will not assert it s intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the products, subject to the terms and conditions herein. other precaution 1. this document may not be reprinted or reproduced, in whole or in part, without prior written consent of rohm. 2. the products may not be disassemble d, converted, modified, reproduced or otherwise changed without prior written consent of rohm. 3. i n no event shall you use in any way whatso ever the products and the related technical information contained in the products or this document for any military purposes , including but not limited to, the development of mass - destruction weapons . 4. the proper names of companies or products described in this document are trademarks or registered trademarks of rohm, its affiliated companies or third parties.
datasheet datasheet notice ? we rev.001 ? 2015 rohm co., ltd. all rights reserved. general precaution 1. before you use our pro ducts, you are requested to care fully read this document and fully understand its contents. rohm shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny rohms products against warning, caution or note contained in this document. 2. all information contained in this docume nt is current as of the issuing date and subj ec t to change without any prior notice. before purchasing or using rohms products, please confirm the la test information with a rohm sale s representative. 3. the information contained in this doc ument is provi ded on an as is basis and rohm does not warrant that all information contained in this document is accurate an d/or error-free. rohm shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information.
datasheet part number bd63620aefv package htssop-b24 unit quantity 2000 minimum package quantity 2000 packing type taping constitution materials list inquiry rohs yes bd63620aefv - web page distribution inventory


▲Up To Search▲   

 
Price & Availability of BD63620AEFV-E2

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X